返回
首页 > 工作总结

高中数学必修二知识点总结精选13篇

时间: 2024-06-09 23:02:43

数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。2022高一必修二数学知识点总结有哪些你知道吗?一起来看看2022高一必修二数学知识点总结,欢迎查阅!问学必有师,讲习必有友,本文是1级文库爱岗的小编惊云帮大家整理的13篇高中数学必修二知识点总结,欢迎参考,希望可以帮助到有需要的朋友。

高中数学必修二知识点总结精选13篇

高中数学必修二知识点总结精选13篇 篇一

一)、培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

1、课前预习,对所学知识产生疑问,产生好奇心。

2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3、思考问题注意归纳,挖掘你学习的潜力。

4、听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

二)、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

三)、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

高中数学必修二知识点总结精选13篇 篇二

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

高中数学必修二知识点总结精选13篇 篇三

直线与平面有几种位置关系

直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。

直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

直线与平面的夹角范围

[0,90°]或者说是[0,π/2]这个范围。

当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。

直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0°

提高数学成绩的技巧是什么

课内重视听讲,课后及时复习

接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

多做题,养成良好的解题习惯

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

数学三角函数知识点

1、终边与终边相同(的终边在终边所在射线上)。

终边与终边共线(的终边在终边所在直线上)。

终边与终边关于轴对称

终边与终边关于轴对称

终边与终边关于原点对称

一般地:终边与终边关于角的终边对称。

与的终边关系由“两等分各象限、一二三四”确定。

2、弧长公式:,扇形面积公式:1弧度(1rad)。

3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。

4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。

7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。

8、三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。

9、三角形中的三角函数:

(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。

(2)正弦定理:(R为三角形外接圆的半径)。

(3)余弦定理:常选用余弦定理鉴定三角形的类型。

高中数学必修二知识点总结精选13篇 篇四

一、平面的基本性质与推论

1、平面的基本性质:

公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2 过不在一条直线上的三点,有且只有一个平面;

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线-平行、相交、异面;

直线与平面-平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面-平行、相交。

3、异面直线:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

所成的角范围(0,90】度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

高中数学必修二知识点总结精选13篇 篇五

高中必修二数学知识点总结

1定理总结

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1:经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4:平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

2空间两直线的位置关系

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为[0°,90°]

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

3两个平面的位置关系

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

4多面体

1、棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

2、棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

3、正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高中数学必修二知识点总结精选13篇 篇六

人教版高中数学必修二教案

人教版高中数学必修二 直线与圆的方程的应用 教案 人教版高中数学必修二 圆与圆的位置关系教案 人教版高中数学必修二 直线与圆的位置关系教案 人教版高中数学必修二 圆的一般方程教案 高一数学 圆的标准方程教案 数学必修二 两条直线的位置关系D点到直线的距离公式教案 直线与直线之间的位置关系-两点间距离 教案 人教版高中数学必修二 两直线的交点坐标 教案。doc 人教版高中数学必修二 直线的一般式方程 教案 人教版高中数学必修二 直线的两点式方程教案。doc 高一数学3.2.1 直线的点斜式方程教案。doc 高一数学3.1.2两条直线的平行与垂直 教案。doc 人教版高中数学必修二 直线的倾斜角和斜率教案 人教版高中数学必修二直线与平面垂直的性质 教案 人教版高中数学必修二平面与平面垂直的判定教案 人教版高中数学必修二 直线与平面垂直的判定教案 人教版高中数学必修二 直线与平面、平面与平面平行的'性质教案 高一数学平面与平面平行的判定教案 人教版高中数学必修二 直线与平面平行的判定 教案 空间中直线与平面、平面与平面之间的位置关系 教案 数学必修二 空间中直线与直线之间的位置关系 教案 高中数学必修二平面教案 人教版高中数学必修二 球的体积和表面积教案 高中数学必修2 柱体、锥体、台体的表面积与体积教案 人教版高中数学必修2 空间几何体的直观图教案 人教 高中数学必修2 空间几何体的三视图

高中数学必修二知识点总结精选13篇 篇七

【一】

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

【二】

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

【三】

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高中数学必修二知识点总结精选13篇 篇八

9月26日,我有幸听取了参加山东省第六批高中数学教学能手的参赛选手的课堂教学,本次参加的选手来自全省十七个地市,评委由来自山师大、曲师大的教授,人民教育出版社编辑,中学数学杂志社编辑和内蒙的教学能手组成。全部参赛选手均提前一天通过抽签决定自己所讲内容,学生均来自诸城一中。

此次听课,给我感触最大的有以下几点:

一、公开课开场白的重要性。由于每个选手都是初次接触诸城一中的学生,因此拉近与学生之间的距离就显得尤为重要。每一个选手各尽所能,将自己最好的一面展现在学生和评委及所有听课老师的面前。比如:一位选手讲的是等差数列求和这一节,他在自己的PPT上,展现了这样的一段文字:

文字内容展示诸城的历史文化,极易引起学生的自豪感和共鸣;文字的排列是等差数列的排布,为本节课的开展设下伏笔,真可谓一举两得。

二、选手自身教学风格的体现。

(1)口头语就很能体现参赛选手的这一特点,比如聊城二中的魏清泉用的最多的一句:请看标准答案。山师附中的庄增臣:还有什么问题吗?北镇中学的王建娥:孩子,试试看;很厉害;很漂亮;非常好。

(2)对问题背景的设置,和处理方式。有的选手按部就班,从复习函数的性质入手,逐步处理函数的应用,有的选手直入主题,将课本给出的例题的背景改为与自身有关或与学生熟知的环境中,提高学生的学习兴趣。

(3)PPT的制作,充分体现选手对课堂每个环节的把握。如潍坊二中的宫忠胜:第一张:欢迎步入数学课堂;第二张:复习回顾;第三张:情景引入;第四张:小组交流;第五张:公式应用;第六张:随堂练习。

(4)精炼的语言表述。在总结函数的应用这一节时,山东省实验中学的林宝磊:设、列、解、答。四个字高度概括了应用函数解决相关实际问题的几个步骤,使学生一目了然,也让听课老师深深感受到选手对数学知识的高度提炼。

高中数学必修二知识点总结精选13篇 篇九

Unit1 Cultural Relics

【重点单词、短语】

1. survive 幸免,生存,生还

2. in search of 寻找

3. select 挑选

4. design 设计,图案,构思

5. fancy 奇特的,异样的,想象

6. decorate 装饰,装潢

7. belong to 属于

8. in return 作为回报

9. at war 处于交战中

10. remove 移动,搬动

11. less than 少于

12. doubt 怀疑

13. worth 值得的,相当于…的价值

14. take apart 拆开

15. explode 爆炸

16. sink 下沉,沉下

17. think highly of 高度评价

【重点句型】

1. There is no doubt that… 毫无疑问…

2. when的用法

was/were doing…when… 正在做某事…这时

was/were about to do… when…. 将要做某事…这时

had just done…when… 刚做完某事…这时

3. China is larger than any other country in the world. (同一范围内的比较)

She runs faster than any man in Greece. (不同范围内的比较)

4. the way的用法

The way___ he explained to us was quite simple. (that/which/省略)

The way ___ he explained the sentence to us was not difficult. (that/in which/省略)

5. worth的用法

be (well) worth doing sth (很)值得做某事

be worthy to be done = be worthy of being done

It’s worthwhile to do sth = it’s worthwhile doing sth

6. “疑问词+ to do” 结构,在句中做主语、宾语、表语

How to do it is a question.

I don’t know what to do next.

7. it做形式主语

It has been proved that pride goes before a fall.

事实证明骄必败。

8. what 引导主语从句,在从句中作主语

What he has said is of great importance.

What happened to him remained unknown.

【语法总结】

非限定性定语从句

非限定性定语从句的作用是对所修饰的成分作进一步说明(注:通常和主句间用逗号隔开,不受主句句子结构的影响,将从句拿掉后其他部分仍可成立)

限制性定语从句与非限制性定语从句的六点区别

区别一:形式不同

限定性定语从句主句和从句之间不用逗号隔开,口语中使用时也不停顿;而非限定性定语从句与主句之间通常有逗号隔开,口语中使用时有停顿。

区别二:功能不同

限定性定语从句用于对先行词的意义进行修饰、限制和识别,如果去掉,就会造成句意不完整或概念不清;而非限定性定语从句用于对先行词起补充说明作用,如果省略,句意仍然清楚、完整。如:

People who take physical exercise live longer. 进行体育锻炼的人活得长些。(若把从句去掉句子就失去意义)

His daughter, who is in Boston now, is coming home next week. 他女儿现在在波士顿,下星期回来。(若把从句去句子意义仍然完整)

区别三:翻译不同

在翻译定语从句时,一般把限定性定语从句翻译在它所修饰的先行词之前,而把非限定性定语从句与主句分开。如:

He is the man whose car was stolen. 他就是汽车被窃的那个人。

I’ve invited Jim, who lives in the next flat. 我邀请了吉姆,他就住在隔壁。

区别四:含义不同

比较下面的两个句子:

I have a sister who is a doctor. 我有一个医生的姐姐。(姐姐不止一个)

I have a sister, who is a doctor. 我有一个姐姐,她是当医生的。(只有一个姐姐)

区别五:先行词不同

限定性定语从句的先行词只能是名词或代词,而非限定性定语从句的先行词则可以是名词或代词,也可以是短语或句子;另外,当先行词为专有名词或其他具有独一无二性的普通名词时,通常要用非限制性定语从句,而不用限制性定语从句。如:

Peter drove too fast, which was dangerous. 彼得开车很快,这是很危险的。(which指drive too fast)

He changed his mind, which made me very angry. 他改变了主意,这使我很生气。(which指整个主句)

区别六:关系词不同

关系词that和why可用于限制性定语从句中,通常不用于非限制性定语从句;另外,在限制性定语从句中,关系词有时可以省略(参见本章有关内容),而在非限制性定语从句中关系词一律不省略。

Unit2 The Olympic Games

【重点单词、短语】

1. compete 比赛,竞争

2. take part in 参加,参与

3. stand for 代表,象征,表示

4. admit 容许,接纳,承认

5. as well 也,又,还

6. host 做东,招待,主人

7. replace 代替

8. charge 收费,控诉

in charge 主管,看管

9. advertise I做广告,登广告

10. bargain 讨价还价,讲条件,便宜货

11. one after another 一个接一个地

12. deserve 应受(报答或惩罚)

13. deserve的用法

deserve to do sth 应该做/值得做

deserve doing = deserve to be done 值得… (doing 表被动意义)

Your suggestion deserves to be considered = deserves considering.

( 用法相似的动词:need/want/require doing= need/want/require to be done 需要….)

14. take part in : 参加有组织的、重大的活动

join in 参加正在进行的活动

join: 参加团体,党派和组织,成为其中的一员(join the army; join the party)

attend: 出席,参加,后跟 meeting,wedding,class, course等

【重点句型】

1. nor/neither + 助动词/be/情态动词 + 主语:表示“…也不这样”

I have never been abroad, and neither/nor has he.

If you don’t go to the party, nor will I.

2. So+情态动词/助动词/be动词+主语 :表示“...也是的一样的”, 强调后者同前者肯定情况一样。

3. So+主语+情态动词/助动词/be动词:表示 “的确如此”,对前面情况的肯定。

4. not only…but (also)… 不但。而且。

Women are not only allowed, but play a very important role in gymnastics.

(1) 引导并列结构:引导主语时,谓语动词 就近原则。

(2) 引导并列句时,not only句倒装,即前倒后不倒。

Not only did they take photos, but also they had a bid dinner.

【语法总结】

被动语态

一。 概念:主动语态表示主语是动作的执行者,被动语态表示主语是动作的承受者。

二。 各种时态被动语态的形式

1. 一般现在时的被动语态 am/is/are + done

2. 一般过去时的被动语态 was/were + done

3. 一般将来时的被动语态 ⑴will be done is/am/are going to be done

4. 现在进行时的被动语态 is/am/are + being + done

表示说话人说话时或现阶段正在进行的动作,经常和时间副词now (现在), right now (现在, 此刻), at present (现在,目前), at this moment (此刻)连用。

5.现在完成时的被动 have/has been done

现在完成时常与already, always, often, ever, never, yet, not...yet, just等不表示明确的时间副词连用, 还可以和表示时间一直延续到目前的带(ever )since, for的状语及包括现在在内的词连用。如: now, today, this month, this year, recently, these days,many times, so far, by now, in the past/last few days/years… 等。6. 过去完成时的被动 had been done

7. 过去将来时的被动 would be done

8. 过去进行时的被动 was/were being done

9. 带情态动词的被动语态 情态动词 + be done

10. 动词不定式的被动式 to be done

e.g. It is an honor for me to be asked to speak here.

三。 注意事项

1. 并不是所有动词都有被动语态

happen, take place, break out, belong to, cost, last等不及物动词或词组无被动语态。

2. 短语动词、固定搭配变被动语态介词或副词不能省。

E.g. Time should be made full use of.

3. 双宾语:一个宾语成主语,另一主语保留不变。

E.g. Mother will buy me an iphone5. → I will be bought an iphone5 (by my mother) .

→ An iphone5 will be bought for me (by my mother) .

Unit3 Computers

【重点单词、短语】

1. solve 解决;解答

2. from…on 从…...时起

3. as a result 结果

4. so…that 如此…以至于

5. explore 探索,探测,研究

6. anyhow 无论如何,即使如此

7. goal 目标,球门,得分

8. human race 人类

9. signal 发信号,信号

10. type 类型,打字

11. in a way 在某种程度上

12. arise 出现,发生

13. with the help of 在…...的帮助下

14. electronic 电子的

15. deal with 处理

16. watch over 看守,监视

17. rise/arise/arouse/raise的区别

【重点句型】

1. certain和sure的句型

sb. be sure/certain of…= sb. be sure/certain that从句:某人确信…

be sure/certain to do sth. 肯定会做…

It’s certain that从句 肯定会

例如:It’s certain that he will succeed.=He’s sure/certain to succeed.他肯定会成功的。

I’m sure/certain of his success.= I’m sure/certain that he will succeed. 我确信他会成功的。

2. 主语+ be + adj + to do The question is easy to answer.

3. 状语从句的省略

在when, while, if, unless, though, once等引导的状语从句中,如果从句的主语和主句的主语一致, 且从句中的谓语含有be动词时, 为了使句子简洁, 可省略从句中的主语和be动词。

While playing in the snow, the two pandas had great fun.

Unless invited, he has decided not to attend that activity.

【语法总结】现在完成时的被动语态(详见第二单元)

Unit4 Wildlife protection

【重点单词、短语】

1. die out 灭亡、逐渐消失

2. hunt 打猎,猎取

3. in peace 和平地,安详地

4. in danger of 在危险中

5. in relief 如释重负,松了口气

6. burst into laughter 突然笑起来

7. protect…from 保护…不受…之害

8. contain 包含,容纳,容忍

9. affect影响,感动,侵袭

10. pay attention to 注意

11. appreciate 鉴赏,感激

12. succeed 成功,接替

13. employ 雇佣,利用

14. harm 危害

15. bite 咬,叮

16. come into being 形成,产生

17. inspect 检查,视察

18. according to 按照,根据

19. so that 以至于

【重点句型】

1. succeed in doing sth 成功的做某事

succeed to sth 继承某事

2. under construction/discussion 正在被建设/讨论

in use 正在被使用

3. do harm to sth = be harmful to sth 对…有害

there is no harm in doing sth 做某事无害

4. be used to do sth 被用来做…

used to sth 过去常常做。

be used to doing sth习惯于做某事

5. It won’t be long before… 过不了多久…就会…

6. take measures to do sth 采取措施做某事

7. with的复合结构:with + n/pron + adj/adv/ 介词短语/现在分词/过去分词/不定式

With a lot of problems to settle, she can’t go out. (将来)

With time going by, he is getting along well with his English. (主动,进行)

With the work done, he can go out. (被动,完成)

【语法总结】现在进行时的被动语态(详见第二单元)

Unit5 Music

【重点单词、短语】

1. roll 滚动,摇晃,卷,

2. dream of 梦见,梦想

3. to be honest 实话说

4. attach 系上,附加

attach …to 认为有……(重要性、意义)

5. form 组成,形成,构成

6. earn 赚,挣得

7. perform 表演,执行,履行

8. in cash 用现金,有现钱

9. play jokes on 戏弄

10. rely on 依赖,依靠

11. be/get familiar with 熟悉

12. or so 大约

13. break up 打碎,分裂

14. in addition 另外

15. sort out 分类

16. above all 最重要,首先

【重点句型】

1. dream of/about 梦想做…

2. to be honest= honestly speaking = to tell the truth 说实话

3. form the habit of... 形成…习惯

in the form of… 以…形式

4. I would appreciate it if… 如果…我将不胜感激。

go wrong 出故障 come up with 提出 make up 构成;编造 a5. as is often the case 情况通常如此

6. It looks as if it is going to rain.(真实语气:很有可能发生)

He treats me as if I were a stranger. (虚拟语气:与现在事实He talked about Rome as if he had been there before. (虚拟语气:与过去事实相反)

【语法总结】

“介词+which/whom”引导的定语从句

关系代词在定语从句中作介词后面的宾语时,有时可把介词提到关系代词的前面,但这时如果先行词是人,要用“介词+whom”引导定语从句;如果先行词是物,要用“介词+which”引导定语从句。且关系代词都不能省略。

Eg: 1. The girl whom I borrowed the bike from is my friend.

2. The girl from whom I borrowed the bike is my friend.

3. How is the film about which I often talked to you?

4. Is this the room in which Mr. Smith lives?

注意:一些固定的含有介词的短语动词在定语从句中不能拆开,即不能把介词放关系词前。

1. This is the bag which he is looking for .

2. The old lady whom she is looking after is her teacher.

高中数学必修二知识点总结精选13篇 篇十

本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性

1、函数单调性的定义

2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法

二、函数的奇偶性和周期性

1、函数的奇偶性和周期性的定义

2、函数的奇偶性的判定和证明方法

3、函数的周期性的判定方法

三、函数的图象

1、函数图象的作法 (1)描点法 (2)图象变换法

2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法

本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

误区提醒

1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高中数学必修二知识点总结精选13篇 篇十一

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型。

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

(4)基本不等式:

了解基本不等式的证明过程。

会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

高中数学必修二知识点总结精选13篇 篇十二

1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a

向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a

向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方)

5.空间向量:同上推论(提示:向量a={x,y,z})

6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a

向量b|或者x1/x2=y1/y2

高中数学必修二知识点总结精选13篇 篇十三

立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

当时,;当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的`倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组的一组解。

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

数学思维方法

对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

高中数学知识点顺口溜

集合与逻辑

集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题。

纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列

数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开。

变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

相关推荐 热点推荐

Copyright©2020 1级文库版权所有 渝ICP备2023011259号-2

联系邮箱:kefu@1jiwen.com